Crop modelling:
Sirius wheat simulation model

Mikhail A. Semenov
Rothamsted Research, UK
Sirius: wheat simulation model

- Initially developed by Peter Jamieson from Crop & Food Research, NZ; since 1992 development in collaboration with Mikhail Semenov at Rothamsted Research, UK

- Intensively tested in different environments and used in many countries (www.rothamsted.bbsrc.ac.uk/mas-models/sirius.php)

- Sirius is a part of the GCTE International Wheat Network
Sirius: wheat simulation model

Inputs
- Daily Weather
- Management
- Cultivar
- Soil

Outputs
- Grain yield
- Grain quality
- N leaching
- Water and N uptake
Sirius: a process-based model

- Radiation Use Efficiency and biomass accumulation
- Phenological development
- Canopy model
- Nitrogen uptake and redistribution
- Evapotranspiration and water limitation
- Soil model
Modelling growth: Radiation Use Efficiency

Radiation Use Efficiency

Biomass = RUE*R
R intercepted radiation

Beer's Law

P = 1 - exp(-k LAI)
P proportion of light intercepted
Modelling canopy

- Phenology is used to predict emergence times of individual leaves
- Deal with leaf “layers”
 - avoid consideration of tillers
 - avoid adding extra parameters for calibration
- Define genetic potential growth
Sirius grows a canopy (LAI) according to simple rules involving temperature, water and N supply; parameters (not rules) vary with cultivar.
Modelling phenology

- Pre-emergence and after anthesis calculations are based on thermal time
- Calculation of anthesis is based on the final leaf number and the value of phyllochron
- Calculation of the final leaf number includes vernalization and daylength responses
N Limitation

Green area contains 1.5 g N/m²; “non-green” biomass can store 1% labile N.

Daily N-demand is set by the increment of new GA and biomass.

Unsatisfied demand limits the GA increment and/or causes N release through premature GA senescence.
Calibration and validation

- Calibration – measuring (direct) or fitting (indirect) model parameters to observed data

- Validation – using independent (not use during calibration) observed data for testing model skills
Validation of Sirius: N experiments

FACE, Maricopa, 1996/97

Reading, 1999/2000 (M. Clarke)
Sirius: soil, evapotranspiration & water limitation

☞ Soil model is based on modified SLIM (UK) and DAISY (DENMARK) models

☞ ET is calculated as the sum of transpiration and soil evaporation after Ritchie (1972). The upper limit is given by the Penman potential ET rate or the Priestley&Taylor equation

☞ Water stress factor reduces leaf expansion and accelerate leaf senescence.
Validation: water-limited grain yield

Measured yield (t/ha) vs. Simulated yield (t/ha)

Y = X

Canterbury, NZ
Rothamsted, UK
Maricopa, H2O
Validation: N uptake
Free-Air CO$_2$ Enrichment Project (FACE)

USDA-ARS U.S. Water Conservation Laboratory, Maricopa, USA

\[\text{RUE} = f(\text{CO}_2) \]
Model complexity

- Model complexity is related to a number of model parameters and model equations

- Hierarchy of complexity:
 - Meta-model (Brooks et al, 2001);
 - Sirius (Jamieson et al., 1998), AFRCWHEAT (Porter 1993), CERES-Wheat (Ritchie and Otter, 1985);
 - Ecosys (Grant, 1998).
Simplifying model

- Mimic model output by non-linear regression

Model response surface

Fitted approximation
Simplifying model

Simplify a model by analysing model structure, model processes and its interactions.
Comparison between Meta-model and Sirius
Rothamsted, UK, 1960-1990 (50% precipitation)
Simulation results, Andalucian region, Spain, 1988-1999

<table>
<thead>
<tr>
<th></th>
<th>Obs</th>
<th>Meta</th>
<th>Sirius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meta</td>
<td>0.92</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Sirius</td>
<td>0.63</td>
<td>0.74</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The scatter plot shows the comparison between observed and simulated data. The line indicates perfect agreement. The symbols represent different models: Meta (◊) and Sirius (□).
Application
Prediction of wheat growth in real time
Application
Prediction of wheat growth in real time

Observed weather

Generated weather

Management

Soil

Sirius

AGRIDE MA Workshop, Vienna, 2005
Weather uncertainty in real-time predictions

Accumulated rainfall, mm
Grain prediction using mixture of observed and generated weather at Rothamsted, 1997

![Graph showing grain yield over time with observed and predicted weather data.](image-url)
Lead-time for predicting wheat growth at Rothamsted
Lead-time for predicting grain yield in diverse climates

Grain yield can be predicted with 0.9 probability:
in Toulouse 40 days and
in Tylstrup 65 days before maturity
Publications

- WWW: www.rothamsted.bbsrc.ac.uk/mas-model/sirius.html